VII республиканская олимпиада учителей математики «КУБ»

Ключи к заданиям (очный тур)

- **1. Ответ:** цифра 9. Однозначных чисел ровно 9, двузначных 99 9 = 90, трёхзначных 999 99 9 = 900 и т.д. Однозначные числа займут в выписанном ряду первые 9 мест, двузначные 90 * 2 = 180 мест, трёхзначные 900 * 3 = 2700 мест. Поэтому интересующая нас цифра принадлежит трехзначному числу. Цифры, принадлежащие не более чем трёхзначным числам, имеют номера от 1 до 9 + 180 + 2700 = 2889. Разность 2019 189 = 1830 нужно разделить на 3, тогда 1830:3 = 610. Интересующая нас цифра принадлежит 610-му трехзначному числу, т.е. числу 709. В этом числе интересующая нас цифра стоит на 3-м месте.
- **2. Ответ:** $\frac{2i}{\pi}$. Решение: Используя формулу Эйлера, представим $-1 = e^{i\pi}$

$$\int_{0}^{1} (-1)^{x} dx = \int_{0}^{1} (e^{i\pi})^{x} dx = \frac{e^{i\pi}}{i\pi} - \frac{1}{i\pi} = -\frac{2}{i\pi} = \frac{2i}{\pi}$$

3. Ответ: 1,875. Пусть начальная сумма кредита равна S_0 , тогда переплата за первый год равна $\overline{100}^{S_0}$. По условию, ежегодный долг перед банком должен уменьшиться равномерно. Этот долг состоит из двух частей: постоянной ежегодной выплаты, равной $S_0/15$, и ежегодной равномерно уменьшающейся выплаты процентов, равной

$$\frac{x}{100}S_0, \ \frac{14}{15} \cdot \frac{x}{100}S_0, \ \dots, \ \frac{2}{15} \cdot \frac{x}{100}S_0, \ \frac{1}{15} \cdot \frac{x}{100}S_0.$$

Используя формулу суммы членов арифметической прогрессии, найдём полную переплату по кредиту:

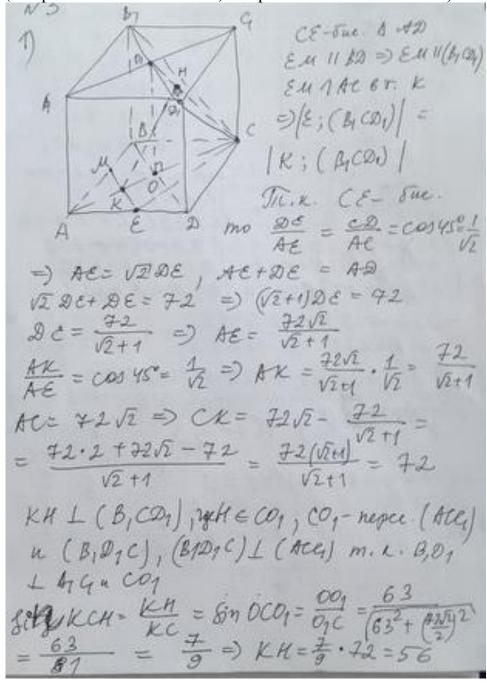
$$\frac{x}{100}S_0\left(1+\frac{14}{15}+\ldots+\frac{2}{15}+\frac{1}{15}\right)=\frac{x}{100}S_0\cdot\frac{1+\frac{1}{15}}{2}\cdot 15=\frac{2x}{25}S_0.$$

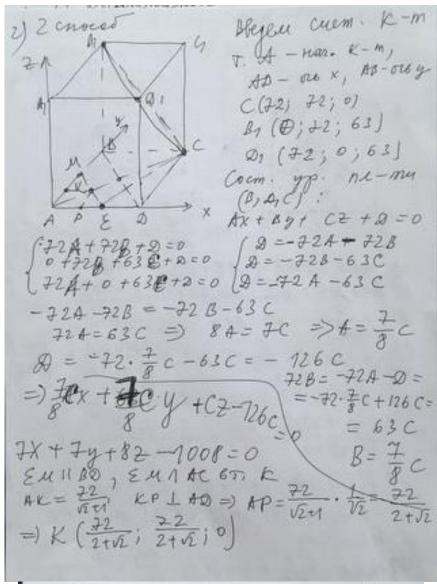
По условию общая сумма выплат на 15% больше суммы, взятой в кредит, тогда: $0.08xS_0 = 0.15S_0 \Leftrightarrow x = 1.875$.

4. Ответ:105.

x(x-6) > (a+3) (1x-3/-3) (Bn)-7. 11. 61=4,-329 2-1 $x(x-6) = x^2 - 6x = (x-3)^2 - 9$ =) (2-3)2 9 > (a+3) (1x-3/-3) (1x-31-3) (|x-31+3) - (a+3) (1x-31-3) 70 (x-3/-3) (1x-3/+3-a-3) > 0 (1x-x-3) (1x-31-a) 7,0 Hyu: [1x-31=3 [x=0 yu x=6] 1x-31=a [a=[x-3] Ког пе-ти Оха построин грарики: x=0, x=6, a=|x-3| и опредении области, где выпасн Ecu x E [6;6], mo |x-3/6[0;3]=> |x-3/-3 E 0 =) /x-3/-a = 0 => a7 /x-3/ lem x < 0 4m x 76, 10 /x-3/-3 > 0 => (x-3/- a > 0 =) a < 1x-4/ m k 6, = 4, mo imata 4 € prem. , To 27/1 M. K. -3<9 <-1, mo -12 < B2 < -3 Hepal conoroe =) T. E ipap & peu. lem x=-12, 10 a= 15 =) npi a 7/15 x € pemernen neg. =) a < 15 => a < [1; 15] Zai = 1+2+ 119 = 1+19 14=7-15=

5. Ответ: 518, 629, 481 и 592. (Не найдена ошибка-0 баллов, найдена ошибка и приведено полное решение -7 баллов).


Комментарий. В решении допущена ошибка (решение неполное). Из условия задачи не следует, что все цифры искомого числа отличны от нуля, а это означает, что не все числа, получаемые перестановкой его цифр, являются трехзначными.


Верное решение. Пусть $x = \overline{abc}$ — искомое число.

Если одна из цифр этого числа равна нулю, то лишь три числа, полученные из искомого перестановкой его цифр, являются трехзначными. Далее имеем: $\overline{ab0} + \overline{a0b} + \overline{ba0} + \overline{b0a} = 211(a+b)$, и, согласно условию, $x = \frac{211(a+b)-x}{5}$, откуда 6x = 211(a+b), т.е., x делится на 211. Среди трехзначных чисел, кратных 211, нет чисел, в записи которых присутствует ноль.

Если все цифры искомого числа отличны от нуля, то см. приведенное выше решение.

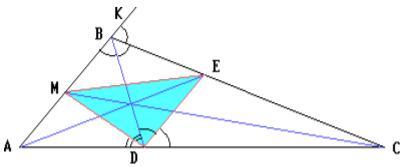
6. Ответ: 56. (1 верный способ-5 баллов, 2 верных способа-7 баллов).

7. Ответ: 8 км. При проверке необходимо учитывать наличие в записи текста обратной задачи: полное верное решение прямой задачи 3 балла, составление текста обратной задачи -1 балл, полное верное решение обратной задачи-3 балла.

109. Пусть
$$v_1$$
 и v_2 — скорости первого и второго пещеходов соответственно, S — расстояние от A до B , x — расстояние, которое осталось пройти второму пещеходу, когда перние, которое осталось пройти второму пещеходу, когда перние, которое осталось пройти второму пещеходу, когда перние, которое осталось пройти второму пещеходу, когда перние $\begin{cases} \frac{Sv_2}{2v_1} + 24 = S, \\ \frac{Sv_1}{2v_2} + 15 = S. \end{cases}$

Пусть $u = \frac{v_1}{v_2}$, тогда получаем
$$\begin{cases} 24 = S\left(1 - \frac{1}{2u}\right), \\ 15 = S\left(1 - \frac{u}{2}\right). \end{cases}$$

Отсюда, разделив второе уравнение на первое, найдем u :


$$\frac{15}{24} = \frac{1 - \frac{u}{2}}{1 - \frac{1}{2u}}; \quad \frac{u(2 - u)}{2u - 1} = \frac{5}{8}; \quad 8u^2 - 6u - 5 = 0; \quad u = \frac{5}{4}; -\frac{1}{2}. \quad \text{Учи-тывая, что } u > 0, \quad u = \frac{5}{4}. \quad \text{Теперь из второго уравнения}$$

$$15 = S\left(1 - \frac{5}{8}\right), \quad \text{или } S = 40 \text{ км.}$$

Поскольку $\frac{Sv_2}{v_1} + x = S$, получаем, что $x = 8$ км. То есть второму пешеходу останется пройти 8 км.

8. Доказательство:

а) Пусть AE, BD и CM — биссектрисы треугольника ABC и $\angle ABC$ = 120°. На продолжении стороны AB за точку B возьмём точку K. Поскольку $\angle EBK$ = 180° - $\angle ABC$ = 180° -120° = 60° = $\angle DBE$, то BE — биссектриса угла DBK, смежного с углом ABD. Поэтому точка E равноудалена от прямых AB и DB, а т.к. точка E лежит на биссектрисе угла BAC, то она равноудалена от прямых AB и CD. Поэтому точка E равноудалена от сторон угла BDC. Значит, DE — биссектриса угла BDC. Аналогично DM — биссектриса угла ADB. Следовательно, $\angle MDE$ = 0,5 ($\angle ADB$ + $\angle BDC$) = 0,5 180° = 90°.

б) Проверка осуществляется векторно-координатным или координатным способом. Верно решен пункт а) - 5 баллов. Верно решен пункт б) -2 балла.

Баллы	Правильность (ошибочность) решения
7	Полное верное решение.
6-7	Верное решение. Имеются небольшие недочеты, в целом не влияющие на решение.
5-6	Решение содержит незначительные ошибки, пробелы в обоснованиях, но в целом верно и может стать полностью правильным после небольших исправлений или дополнений
4	Верно рассмотрен один из двух (более сложный) существенных случаев.
2-3	Доказаны вспомогательные утверждения, помогающие в решении задачи.
0-1	Рассмотрены отдельные важные случаи при отсутствии решения (или при ошибочном решении).
0	Решение неверное, продвижения отсутствуют.
0	Решение отсутствует.